Abstract

The terrestrial abundance of heavy halogens Cl, Br, and I is depleted by approximately one order of magnitude relative to those predicted on the basis of their volatilities. One plausible explanation for this missing halogen paradox is their sequestration into the Earth’s core. Therefore, heavy halogens in the core may combine with the dominant element, Fe, to form iron halides that potentially exert important effects on the properties and dynamic evolution of the Earth’s inner core. In this study, stable iron halide phases have been predicted from first-principles structural searches at four pressures corresponding to those at the Earth’s mantle and core. At 360 GPa (corresponding to the inner core), the most stable iron chloride is CsCl-type FeCl, supporting the hypothesis that light-element impurities can stabilize the body-centered cubic Fe structure. At pressures of the Earth’s core, it is also observed that the chemical nature of iodine changes from an electron acceptor to an electron donor. This ch...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call