Abstract

Using the density functional theory(B3LYP) method, the 6-311++G(3df,2pd), AUG-cc-PVTZ, AUG-cc-PVQZ basis sets for H and effective core potentials for Y, the energies, equilibrium structure and harmonic frequency of the ground states of YH(D,T) molecules are calculated. Based on the theory of atomic and molecular reaction statics, the reasonable dissociation limits of the ground states of YH(D,T) molecules are derived. By comparing the calculation results with the existing experimental and theoretical values, we find that the mixed basis sets LANL2TZ/AUG-cc-PVQZ are most suited for the calculation of the molecules. Consequently, the potential energy surfaces of the ground states of YH(D,T) molecules are scanned at the B3LYP/LANL2TZ/AUG-cc-PVQZ level of theory. The potential energy curves of the ground states of YH(D,T) molecules are obtained by the least square fitting to the Murrell-Sorbie potential energy function. The spectroscopic constants (Be, e, e, ee, De) and force constants ((f2, f3, f4)are calculated and compared with experimental results, indicating that the calculation results are in good agreement with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.