Abstract

Using aqueous conditions, three new coordination polymers containing Cu(2+) cations, dicyanamide (dca) anions, and pyrimidine (pym) were isolated and structurally and magnetically characterized. Comprising the bulk of the product yield, Cu(dca)(2)(pym)(2), 1, crystallizes in the monoclinic space group P2(1)/c with a = 7.3569(5) A, b = 13.4482(9) A, c = 7.4559(5) A, beta = 98.984(3) degrees, and V = 728.6(1) A and forms linear 1D chains. The second compound, Cu(dca)(NO(3))(pym)(H(2)O), 2, is also monoclinic, P2(1)/n, with a = 7.6475(3) A, b = 12.2422(5) A, c = 11.0286(4) A, beta = 106.585(2) degrees, and V = 989.6(1) A(3). A 2D network structure consisting of both bridging mu-dca and pym ligands is formed while the NO(3)(-) and H(2)O are axially bonded to the Cu center. Cu(3)(dca)(6)(pym)(2).0.75H(2)O, 3, is triclinic, Ponemacr;, with a = 7.7439(4) A, b = 9.3388(5) A, c = 10.1779(5) A, alpha = 86.014(2) degrees, beta = 88.505(2) degrees, gamma = 73.623(2) degrees, and V = 704.46(9) A(3). The structure of 3 is quite unique in that [Cu(3)(pym)(2)](6+) trimers are interconnected via mu-dca ligands affording a complex 3D self-penetrating framework. Magnetically, 1 exhibits extremely weak exchange interactions along the Cu-(dca)(2)-Cu ribbons while 2 and 3 display very strong magnetic couplings mediated by the mu-bonded pym ligands. Moreover, 2 shows a broad maximum in chi(T) at 40 K and behaves as a uniform 1D antiferromagnetic chain with g = 2.09(1), J/k(B) = -42.6(1) K, and TIP = -66 x 10(-)(6) emu/mol. An S = (1)/(2) trimer model that includes intertrimer interactions successfully described the magnetic behavior of 3, yielding g = 2.10(1), J/k(B) = -69.4(5) K, theta = -0.28(3) K, and TIP = -180 x 10(-)(6) emu/mol. It is found that mu-bonded dca and pym ligands mediate very weak and very strong exchange interactions, respectively, between Cu(2+) centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.