Abstract

The cis,syn-cyclobutane pyrimidine dimer (CPD) is a photoinduced DNA lesion leading to a significant distortion of the DNA structure. Its repair by DNA photolyase requires a flip of the damaged base into an extrahelical position. This base flip is expected to be sequence-dependent, but the structures and energetics as a function of the bases 3' and 5' to the CPD lesion are unknown. Eight-nanosecond MD simulations of four different hexadecamer duplexes with the CPD were performed for the flipped-in and flipped-out structures. Analysis of these results indicates clear sequence-dependent differences. Significant disruptions of the base pairs to the 3' side of the CPD are observed for the flipped-out structures with adjacent A-T pairs, whereas those with G-C pairs adjacent show no such distortions. The conformational spaces occupied by these two duplexes are significantly different. The structural differences correlate well with the free energy differences for base flipping calculated using the previously established 2D potential of mean force (PMF) method. The energy differences for base flipping in duplexes containing A, T, G, and C pairs adjacent to the CPD were found to be 6.25-6.5, 5.25-5.5, 7.25-7.5, and 6.5-6.75 kcal/mol, respectively. These energy differences of up to 2 kcal/mol should be large enough to be detected experimentally using sensitive probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.