Abstract

The aim of the present work is to investigate and compare the non-catalytic and catalytic reactivities of real and model soot samples through temperature-programmed oxidation (TPO). Such reactivity was furthermore correlated with soot structural properties, determined by laser granulometry, XRD, Raman and HRTEM. Biodiesel soot samples were obtained through the combustion of different fuels in a real engine, whereas model soot samples were produced in a laminar burner. TPO evidenced that the soot generated with 100% Biodiesel (methyl ester) was more reactive than real soot generated with 7% Biodiesel (7% methyl ester). The model soot from the diesel surrogate (Aref) containing 7% oxygenate additive (C11H22O2) exhibited higher reactivity than the model soot containing 30% additive, whereas a carbon black (Degussa Printex U) showed the poorest reactivity of this series. The presence of NO2 promoted the non-catalytic oxidation of real soot. In the presence of the MnOx-CeO2 catalyst, soot reactivity depended both on reactant gas composition and on soot-catalyst contact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.