Abstract
Positron emission tomography (PET) reporter gene imaging can be used to non-invasively monitor cell-based therapies. Therapeutic cells engineered to express a PET reporter gene (PRG) specifically accumulate a PET reporter probe (PRP) and can be detected by PET imaging. Expanding the utility of this technology requires the development of new non-immunogenic PRGs. Here we describe a new PRG-PRP system that employs, as the PRG, a mutated form of human thymidine kinase 2 (TK2) and 2'-deoxy-2'-18F-5-methyl-1-β-L-arabinofuranosyluracil (L-18F-FMAU) as the PRP. We identified L-18F-FMAU as a candidate PRP and determined its biodistribution in mice and humans. Using structure-guided enzyme engineering, we generated a TK2 double mutant (TK2-N93D/L109F) that efficiently phosphorylates L-18F-FMAU. The N93D/L109F TK2 mutant has lower activity for the endogenous nucleosides thymidine and deoxycytidine than wild type TK2, and its ectopic expression in therapeutic cells is not expected to alter nucleotide metabolism. Imaging studies in mice indicate that the sensitivity of the new human TK2-N93D/L109F PRG is comparable with that of a widely used PRG based on the herpes simplex virus 1 thymidine kinase. These findings suggest that the TK2-N93D/L109F/L-18F-FMAU PRG-PRP system warrants further evaluation in preclinical and clinical applications of cell-based therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.