Abstract

Antimicrobial peptides expressed on different epithelial lining are major components of the innate immune system. Based on the deduced amino acid sequence of Bubalus bubalis lingual antimicrobial peptide (LAP) cDNA (Accession No. DQ458768), five overlapping peptides LAP(23-55), LAP(42-64), LAP(21-64), LAP(1-26) and LAP(1-64) were synthesized using solid phase fluorenylmethoxycarbonyl (Fmoc) chemistry. Circular Dichroism spectroscopy of synthesized peptides revealed predominantly beta-structure for LAP(23-55,) LAP(42-64) and LAP(21-64) with less alpha-helix in different solutions. Quantitation of secondary structure indicated the highest beta-structure for all these three peptides in membrane mimetic SDS solution. The helicogenic solvent TFE could not induce helix in LAP(23-55) however TFE induced helical propensity was observed in LAP(42-64) and LAP(21-64). The quantitation of secondary structure indicated the highest ordered structure for LAP(23-55) followed by LAP(42-64) and LAP(21-64). The antibacterial activity of LAP(23-55) was found to be more potent against Staphylococcus aureus, Listeria monocytogens, Escherichia coli and Salmonella typhimurium followed by LAP(42-64) and LAP(21-64). Minimum inhibitory concentration (MIC) also showed similar trend with lowest value for LAP(23-55) followed by LAP(42-64) and LAP(21-64). Haemolysis and cytotoxicity was observed above 3 fold for LAP(21-64,) above six fold for LAP(23-55) and LAP(42-64) of their MIC. The LAP(1-26) and LAP(1-64) could not produce any characteristic CD spectra and did not show any antimicrobial activity, indicating that N- terminal of the peptide negates the antimicrobial activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call