Abstract
In this paper, we present two choices of structured spectral gradient methods for solving nonlinear least squares problems. In the proposed methods, the scalar multiple of identity approximation of the Hessian inverse is obtained by imposing the structured quasi-Newton condition. Moreover, we propose a simple strategy for choosing the structured scalar in the case of negative curvature direction. Using the nonmonotone line search with the quadratic interpolation backtracking technique, we prove that these proposed methods are globally convergent under suitable conditions. Numerical experiment shows that the methods are competitive with some recently developed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.