Abstract

In this paper, we present two nonmonotone versions of adaptive cubic regularized (ARC) method for unconstrained optimization problems. The proposed methods are a combination of the ARC algorithm with the nonmonotone line search methods introduced by Zhang and Hager [A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim. 14 (2004), pp. 1043–1056] and Ahookhosh et al. [A nonmonotone trust-region line search method for large-scale unconstrained optimization, Appl. Math. Model. 36 (2012), pp. 478–487]. The global convergence analysis for these iterative algorithms is established under suitable conditions. Several numerical examples are given to illustrate the efficiency and robustness of the newly suggested methods. The obtained results show the satisfactory performance of the proposed algorithms when compared to the basic ARC algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.