Abstract

In interplanetary trajectory optimization, events such as planetary gravitational-assist maneuvers (swingbys) and deep-space maneuvers can be added/removed from the trajectory plan to reduce the cost or the flight time. This renders the number of design variables in the optimization problem variable. Global optimization methods that optimize this type of multimodal objective function can only handle problems with a fixed number of design variables. This paper presents the structured-chromosome evolutionary algorithm framework that is developed to handle variable-size design space optimization problems. In this framework, a solution (chromosome) is represented by a hierarchical data structure where the genes in the chromosome are classified as dependent and nondependent genes. This structure provides the capability to apply genetic operations between solutions of different lengths, and thus to automatically determine the number of swingbys, the planets to swingby, launch and arrival dates, and the number of deep-space maneuvers, as well as their locations, magnitudes, and directions, in an optimal sense. This new method is applied to several interplanetary trajectory design problems. Results show that solutions obtained using this tool match known solutions for some complex problems. A comparison between genetic algorithms and differential evolution in the structured-chromosome framework is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.