Abstract

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew's correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.