Abstract

Perfluoroalkyl acids (PFAAs) are detectable in human blood. PFAA exposure may contribute to androgen receptor (AR)-related health effects such as prostate cancer (PCa). In Norway and Sweden, exposures to PFAAs and PCa are very real concerns. In vitro studies conventionally do not investigate PFAA-induced AR disruption at human blood-based concentrations, thus limiting application to human health. We aim to determine the endocrine disrupting activity of PFAAs based upon human exposure levels, on AR transactivation and translocation. PFAAs (PFOS, PFOA, PFNA, PFDA, PFHxS, and PFUnDA) were tested at concentrations ranging from 1/10 × to 500 × relative to human blood based upon the exposure levels observed in a Scandinavian population. Translocation was measured by high content analysis (HCA) and transactivation was measured by reporter gene assay (RGA). No agonist activity (translocation or transactivation) was detected for any PFAAs. In the presence of testosterone, AR translocation increased following exposure to PFOS 1/10 × and 100 ×, PFOA 1/10 ×, and PFNA 1 × and 500 × (P < 0.05). In the presence of testosterone, PFOS 500 × antagonised AR transactivation, whereas PFDA 500 × increased AR transactivation (P < 0.05). PFAAs may contribute to AR-related adverse health effects such as PCa. PFAAs can disrupt AR signalling via two major components: translocation and transactivation. PFAAs which disrupt one signalling component do not necessarily disrupt both. Therefore, to fully investigate the disruptive effect of human exposure-based contaminants on AR signalling, it is imperative to analyse multiple molecular components as not all compounds induce a disruptive effect at the same level of receptor signalling.

Highlights

  • Perfluoroalkyl substances (PFAS) are organic compounds with hydrogen atoms replaced by fluorine atoms with the exception of the functional group

  • Concentrations of Perfluoroalkyl acids (PFAAs) were based upon the exposure levels detected in Scandinavian blood (Berntsen et al 2017)

  • PFAA concentrations based upon the exposure profile of the human Scandinavian population disrupt androgen receptor (AR) signalling by two different biological mechanisms

Read more

Summary

Introduction

Perfluoroalkyl substances (PFAS) are organic compounds with hydrogen atoms replaced by fluorine atoms with the exception of the functional group. Perfluoroalkyl acids (PFAAs) are a class of PFAS. Perfluorooctane sulfonic acid (PFOS) is a fully fluorinated anion that was intentionally produced for commercial use in electric and electronic parts, firefighting foam, and textiles. PFOS may unintentionally be produced as the degradation product of similar anthropogenic chemicals (Buck et al 2011). PFOS and related PFAAs have been categorised as new or emerging persistent organic pollutants (POPs) due to substantial bioaccumulation and biomagnifying properties (Buck et al 2011; Olsen et al 2009). PFAAs are ubiquitous and stable chemicals widely detected in humans (Buck et al 2011; Kishi et al 2015).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call