Abstract

We report the structure and antigenicity of the third variable region (V3) of the HIV2 envelope glycoprotein by the use of linear and cyclic peptides. To this end, a peptide mimicking this region was synthesized and purified, both as an iodoacetamidated linear peptide and a disulphide-bridged cyclic peptide. The cross-reactivity of three monoclonal antibodies (mAbs) produced against the envelope glycoprotein gp140 with the linear and cyclic peptides was tested with ELISA. The results showed that the cyclic peptide is a better ligand for the 3 mAbs 125-F, 125-J and 125-K. The avidity of the mAb/peptide interaction was further analysed by determining the concentration of linear or cyclic peptide leading to 50% inhibition of mAb-peptide complex formation (K0.5). The K0.5 value of mAb 125-F, which displayed the best reactivity with gp140, was estimated to be 5 times higher for the linear (K0.5 = 1.5 x 10(-6) M) than for the cyclic peptide (K0.5 = 3 x 10(-7) M). This indicates a higher affinity of mAb 125-F for the cyclic peptide. mAb 125-J, which exhibited a lower avidity for the gp140 compared to mAb 125-F, had a similar affinity for the cyclic and the linear peptides (K0.5 = 3 x 10(-7) M). mAb 125-K had the lowest reactivity with gp140 and its binding to adsorbed peptide could not be inhibited by the soluble linear or cyclic peptide used up to 10(-5) M. These results suggest that cyclic peptides may have a higher propensity for adopting a native-like structure for the peptide/antibody interaction. Nuclear magnetic resonance experiments at 25 degrees C in phosphate buffer pH 5.4, however, showed that neither peptide displayed a well-defined structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call