Abstract

Oligospermine-siRNA conjugates are able to induce efficient luciferase gene silencing upon carrier-free transfection. These conjugates are readily accessible by a versatile automated chemistry that we developed using a DMT-spermine phosphoramidite reagent. In this article, we used this chemistry to study a wide range of structural modifications of the oligospermine-siRNA conjugates, i.e., variation of conjugate positions and introduction of chemical modifications to increase nuclease resistance. At first we examined gene silencing activity of a series of siRNA-tris(spermine) conjugates with and without chemical modifications in standard carrier assisted conditions. The three spermine units attached at one of the two ends of the sense strand or at the 3'-end of the antisense strand are compatible with gene silencing activity whereas attachment of spermine units at the 5'-end of the antisense strand abolished the activity. 2'-O-Methylated nucleotides introduced in the sense strand are compatible while not in the antisense strand. Thiophosphate links could be used without activity loss at the 3'-end of both strands and at the 5'-end of the sense strand to conjugate oligospermine. Consequently a series of oligospermine-siRNA conjugates containing 15 to 45 spermines units in various configurations were chosen, prepared, and examined in carrier-free conditions. Attachment of 30 spermine units singly at the 5'-end of the sense strand provides the most potent carrier-free siRNA. Longevity of luciferase gene silencing was studied using oligospermine-siRNA conjugates. Five day long efficiency with more than 80% gene expression knockdown was observed upon transfection without vector. Oligospermine-siRNA conjugates targeting cell-constitutive natural lamin A/C gene were prepared. Efficient gene silencing was observed upon carrier-free transfection of siRNA conjugates containing 20 or 30 spermine residues grafted at the 5'-end of the sense strand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.