Abstract

We generalize the structure theorem of Robertson and Seymour for graphs excluding a fixed graph H as a minor to graphs excluding H as a topological subgraph. We prove that for a fixed H, every graph excluding H as a topological subgraph has a tree decomposition where each part is either almost embeddable to a fixed surface or has bounded degree with the exception of a bounded number of vertices. Furthermore, such a decomposition is computable by an algorithm that is fixed-parameter tractable with parameter |H|. We present two algorithmic applications of our structure theorem. To illustrate the mechanics of a typical application of the structure theorem, we show that on graphs excluding H as a topological subgraph, Partial Dominating Set (find k vertices whose closed neighborhood has maximum size) can be solved in time f(H,k) • nO(1) time. More significantly, we show that on graphs excluding H as a topological subgraph, Graph Isomorphism can be solved in time nf(H). This result unifies and generalizes two previously known important polynomial-time solvable cases of Graph Isomorphism: bounded-degree graphs and H-minor free graphs. The proof of this result needs a generalization of our structure theorem to the context of invariant treelike decomposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.