Abstract

Physical, thermomechanical, and shape memory properties of two different samples of poly(lactic acid) (PLA) multifilament yarns were determined using various complementary techniques. The birefringence and crystalline fraction of one sample was higher than the other filaments sample indicating higher molecular orientation and compactness. For both filaments, two distinct morphological features with different sizes in the order of few nanometers (less than 50 nm) were found using AFM and SAXS techniques. The glass transition temperature (Tg) of the samples were ranged from 61 °C to 76 °C depends on the sample and the methods of measurement. Partial storage modulus (E′) increase above Tgas well as additional small peak in loss modulus (E″) of the lower crystallinity sample was assigned to recrystallization. The multiple overlapped peaks in the E″ and tan δ curves and subsequent crystallization along with exothermic peak right after Tg suggests the existence of both relaxed and oriented amorphous regions. The rigid crystalline regions prevented the shrinkage and enhanced dimensional stability. Multifilament yarn with higher crystallinity and total molecular orientation showed higher modulus (both dynamic and static) and strength and lower elongation at break. The oriented non-crystalline regions in the multifilament yarn sample led to moderate modulus and strength along with high elongation at break. The shape recovery of both samples with different structural parameters stayed almost constant (~50 %) upon the deformation temperature rise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.