Abstract

Structure-preserving numerical techniques for computation of stable deflating subspaces, with applications in control systems design, are presented. The techniques use extended skew-Hamiltonian/Hamiltonian matrix pencils, and specialized algorithms to exploit their structure: the symplectic URV decomposition, periodic QZ algorithm, solution of periodic Sylvester-like equations, etc. The structure-preserving approach has the potential to avoid the numerical difficulties which are encountered for a traditional, non-structured solution, returned by the currently available software tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.