Abstract
We demonstrate how image recognition and reinforcement learning combined may be used to determine the atomistic structure of reconstructed crystalline surfaces. A deep neural network represents a reinforcement learning agent that obtains training rewards by interacting with an environment. The environment contains a quantum mechanical potential energy evaluator in the form of a density functional theory program. The agent handles the 3D atomistic structure as a series of stacked 2D images and outputs the next atom type to place and the atomic site to occupy. Agents are seen to require 1000–10 000 single point density functional theory evaluations, to learn by themselves how to build the optimal surface reconstructions of anatase TiO2(001)-(1 × 4) and rutile SnO2(110)-(4 × 1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.