Abstract

The potential energy surface of a heteroparticle system will contain points that are local minima in both coordinate space and permutation space for the different species. We introduce the term biminima to describe these special points, and we formulate a deterministic scheme for finding them. Our search algorithm generates a converging sequence of particle-identity swaps, each accompanied by a number of local geometry relaxations. For selected binary atomic clusters of size N = N(A) + N(B) ≤ 98, convergence to a biminimum on average takes 3 N(A)N(B) relaxations, and the number of biminima grows with the preference for mixing. The new framework unifies continuous and combinatorial optimization, providing a powerful tool for structure prediction and rational design of multicomponent materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.