Abstract

Significant progress in theoretical and computational techniques for predicting stable crystal structures has recently begun to stimulate targeted synthesis of such predicted structures. Using a global space-group optimization (GSGO) approach that locates ground-state structures and stable stoichiometries from first-principles energy functionals by objectively starting from randomly selected lattice vectors and random atomic positions, we predict the first alkali diazenide compound Na(n)N(2), manifesting homopolar N-N bonds. The previously predicted Na(3)N structure manifests only heteropolar Na-N bonds and has positive formation enthalpy. It was calculated based on local Hartree-Fock relaxation of a fixed-structure type (Li(3)P-type) found by searching an electrostatic point-ion model. Synthesis attempts of this positive ΔH compound using activated nitrogen yielded another structure (anti-ReO(3)-type). The currently predicted (negative formation enthalpy) diazenide Na(2)N(2) completes the series of previously known BaN(2) and SrN(2) diazenides where the metal sublattice transfers charge into the empty N(2) Π(g) orbital. This points to a new class of alkali nitrides with fundamentally different bonding, i.e., homopolar rather than heteropolar bonds and, at the same time, illustrates some of the crucial subtleties and pitfalls involved in structure predictions versus planned synthesis. Attempts at synthesis of the stable Na(2)N(2) predicted here will be interesting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call