Abstract
Blakeslea trispora is known for its potential to produce an excess of carotenoids in mixed cultures of strains of opposite sex. The biosynthesis of β-carotene in B. trispora is activated not only by sex hormone trisporic acid but also by light, especially blue light. In fungi, the most intensively investigated blue-light reception proteins are WC-1 and WC-2, and the two proteins form a transcription factor complex which is called WCC by their PAS domains. Notably, multiple genes similar to wc-1 and wc-2 have been identified and characterized in Phycomyces, Mucor, and Rhizopus. Here we report that there are four members of wc-2-like gene family in B. trispora genome: Btwc-2a, Btwc-2b, Btwc-2c, and Btwc-2d. When the mycelia were exposed to blue light, their transcription levels are regulated differentially. Except for BtWC-2b, which only has a PAS domain, the other three proteins contain both a PAS domain and a ZnF domain. BtWC-2a interacts with either BtWC-1a or BtWC-1c to form different photoreceptor complexes in yeast two-hybrid assays, which is the unique situation not yet described in other fungi. In addition, the protein-protein docking analysis by the predicted 3D structures showed that the two complexes are structurally different. These results suggested that WC proteins of B. trispora are still involved in light regulation by forming WCC and the regulation mechanism of the photobiology appears to be more complex.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have