Abstract

The confinement of lysozyme in 3 layered materials based on montmorillonite and lamellar double hydroxides exhibiting different surface charges was studied. The protein structure and orientation in these materials were determined by X-ray diffraction, time resolved fluorescence and fluorescence anisotropy. For montmorillonite exchanged with sodium and modified with a non-ionic surfactant (tri-ethylene glycol mono n-decyl ether), the lysozyme was found to be located in the interlayer space with the “end-on” and “side-on” orientations, respectively. Conversely, no lysozyme intercalation was observed with a lamellar double hydroxide modified with an anionic surfactant (sodium octylsulfate), since the protein was adsorbed on the surface of the particles. Fourier transformed infrared spectroscopy analysis shows that lysozyme confinement in the interlayer space preserves its structure after dehydration, whereas some structural changes were observed for lysozyme adsorbed on the particle surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.