Abstract

An investigation involving the addition of surfactant to remediate cadmium-contaminated soils was perfoemed to determine the optimal surfactant enhanced remediation system. Anionic (sodium dodecyl sulfate, SOS), nonionic (Triton X-100, TX100) and cationic (cetyltrimethylammonium bromide, CTAB) surfactants were used to elucidate the extraction efficiency of surfactant. EDTA and diphenylthiocarbazone (DPC) were also added to enhance the extraction efficiencies of surfactants. Moreover, the pH effect was examined to determine the optimal surfactant systems. The addition of anionic and nonionic surfactants can enhance the desorption rates of cadmium, lead and zinc, whereas the addition of cationic surfactant decreased the desorption efficiency of heavy metals. The desorption efficiency was found to increase linearly with the increasing surfactant concentration below critical micelle concentration (CMC) and remained relatively constant above the CMC. Moreover, the addition of EDTA can significantly enhance the desorption efficiency of heavy metals. Cationic surfactant was shown to be a more effective surfactant than nonionic and anionic surfactants in extracting heavy metals under acidic environment. The desorption efficiency of heavy metal in the surfactant/EDTA mixture system was in the order of Cd > Pb> Zn. However, the addition of DPC lowered the heavy metal removals by 2 to 4 times. Also, increasing pH value can decrease the extraction capabilities of nonionic and anionic surfactants. The results of this study demonstrate that surfactant in combination with complexing agents can be effectively used as chemical amendments to flush cadmium-contaminated soil by proper selection of type and concentration of surfactant and complexing agent at different pH values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.