Abstract

Frames are the main components of the flight motion simulator, which are the support for each shaft system, at the same time the rotating load for the external shaft, so the stiffness and dynamic characteristics of the frames in a large extent determines the final accuracy and dynamic performance of the flight motion simulator. For the cast aluminum alloy ZL114A frames of a 3-DOF flight motion simulator, using finite element analysis method, the dynamic characteristics are calculated and analyzed, and then the each order resonance frequency and mode of vibration are obtained. By using of the modal synthesis method and optimization algorithms, the structural dynamics of frames are designed optimally, so as to further reducing the moment of inertia, and improving the stiffness and dynamic characteristics of frames. This method has provided important reference for the reasonable design of the frame structure, and definitively established the foundation to further study the triaxial coupling dynamic characteristics and system mechanical optimization for the flight motion simulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call