Abstract

Abstract Determining the natural frequency of watermelon is important to reduce loss by vibration during transportation. The purpose of frequency sweep test is to determine the tolerance of watermelon to vibration within a certain frequency range and to search the resonant frequency of watermelon in a certain frequency range. Frequency sweep test of Xinong No.8 watermelon cultivar was conducted, and the acceleration transmissibility curve was obtained. Furthermore, the 1st and 2nd order natural frequencies of watermelon were determined as 35.125 Hz and 71.034 Hz respectively from the acceleration transmissibility curve. Based on Geometric and mechanical parameters of Xinong No.8 watermelon cultivar, a finite element analysis model was developed and modal analysis of watermelon was carried out to obtain its natural frequencies and mode shapes. Since the value of 1st and 2nd order resonance frequency were the same or similar to the value of 3rd, 4th, and 5th order resonance frequency, this study only focused on 1st and 2nd order modes. The 1st order and 2nd order natural frequency test data fit to the corresponding simulation data well which validated the FEA model. This study demonstrated the feasibility of detecting the resonant frequency of watermelon vibration during transportation using FEA methods and provided a theoretical basis for watermelon transportation device design to reduce damage by avoiding resonant frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call