Abstract
The atomic structure of sub-monolayer amounts of Ti deposited on the Al(001) surface at room temperature has been investigated using low-energy electron diffraction (LEED) and low-energy ion scattering spectroscopy (LEIS). The Ti coverage was determined using Rutherford backscattering spectroscopy (RBS). Though a crisp LEED image is inherently difficult to obtain, the symmetry of the observed c(2 × 2) LEED images allows us to infer a structure which places Ti atoms in every other Al lattice site. Analysis of the LEIS azimuth- and polar-angle scan spectra has been done to determine the best structural model which supports the c(2 × 2) symmetry of the LEED image as well as LEIS experimental data. It was concluded that the best model consistent with the experimental data, puts Ti preferentially below the surface of the Al substrate at every other lattice site for sub-monolayer coverage of Ti on Al(001). As Ti coverage increases, the presence if Ti atoms in the surface layer also increases. Results of this study are relevant to research pertaining to the possible use of Ti as a catalyst in sodium alanate (NaAlH 4) in hydrogen storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.