Abstract
We present a force-biased Monte Carlo (FMC) method for structural modeling of transition metal clusters of Fe, Ni, and Cu with 5 to 60 atoms. By employing the Finnis-Sinclair potential for Fe and the Sutton-Chen potential for Ni and Cu, the total energy of the clusters is minimized using a method that utilizes atomic forces in Monte Carlo simulations. The structural configurations of the clusters obtained from this biased Monte Carlo approach are analyzed and compared with the same from the Cambridge Cluster Database (CCD). The results show that the total-energy of the FMC clusters is very close to the corresponding value of the CCD clusters as listed in the Cambridge Cluster Database. A comparison of the FMC and CCD clusters is presented by computing the pair-correlation function, the bond-angle distribution, and the distribution of atomic-coordination numbers in the first-coordination shell, which provide information about the two-body and three-body correlation functions, the local atomic structure, and the bonding environment of the atoms in the clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.