Abstract

The effect of the nitriding temperature in electron beam plasma on the structural and phase composition of the surface layers of metastable austenitic stainless steels is studied. Conversion electron Mossbauer spectroscopy shows that nitriding at 350°C results in the transition of the austenite into the α (bcc) phase by the shear mechanism in the surface layers of a plate (tenths of a micron). A nitrogen supersaturated austenite and a mixture of nitrides with a predominant configuration of three nitrogen atoms in the environment of iron are formed in layers 1–5 μm thick. Nitriding at a temperature of 500°C and above leads to nitrogen supersaturated austenite decomposition, the escape of chromium and nitrogen from the matrix into nitrides CrN, Fe4N, and FexN, and the subsequent γ → α phase transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.