Abstract

The structure of the membrane integral rotor ring of the proton translocating F(1)F(0) ATP synthase from spinach chloroplasts was determined to 3.8 A resolution by x-ray crystallography. The rotor ring consists of 14 identical protomers that are symmetrically arranged around a central pore. Comparisons with the c(11) rotor ring of the sodium translocating ATPase from Ilyobacter tartaricus show that the conserved carboxylates involved in proton or sodium transport, respectively, are 10.6-10.8 A apart in both c ring rotors. This finding suggests that both ATPases have the same gear distance despite their different stoichiometries. The putative proton-binding site at the conserved carboxylate Glu(61) in the chloroplast ATP synthase differs from the sodium-binding site in Ilyobacter. Residues adjacent to the conserved carboxylate show increased hydrophobicity and reduced hydrogen bonding. The crystal structure reflects the protonated form of the chloroplast c ring rotor. We propose that upon deprotonation, the conformation of Glu(61) is changed to another rotamer and becomes fully exposed to the periphery of the ring. Reprotonation of Glu(61) by a conserved arginine in the adjacent a subunit returns the carboxylate to its initial conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.