Abstract
It was recently discovered that fractional quantum Hall (FQH) states can be classified by the way ground state wave functions go to zero when electrons are brought close together. Quasiparticles in the FQH states can be classified in a similar way, by the pattern of zeros that result when electrons are brought close to the quasiparticles. In this paper we combine the pattern-of-zero approach and the conformal-field-theory (CFT) approach to calculate the topological properties of quasiparticles. We discuss how the quasiparticles in FQH states naturally form representations of a magnetic translation algebra, with members of a representation differing from each other by Abelian quasiparticles. We find that this structure dramatically simplifies topological properties of the quasiparticles, such as their fusion rules, charges, and scaling dimensions, and has consequences for the ground state degeneracy of FQH states on higher genus surfaces. We find constraints on the pattern of zeros of quasiparticles that can fuse together, which allow us to obtain the fusion rules of quasiparticles from their pattern of zeros, at least in the case of the (generalized and composite) parafermion states. We also calculate from CFT the number of quasiparticle types in the generalized and composite parafermion states, which confirm the result obtained previously through a completely different approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.