Abstract

A microchanneling process utilizing microscopic reactive infiltration produces microchannels and alloy lining layers in metal bodies. We examined the composition and structure of a Ni-Al intermetallic lining layer with a peculiar porous structure produced by Ni-Al reactive infiltration. The Ni-Al lining layer is a thick film consists of multiple sub-layers and has many micropores. Such a porous structure and the heat resistance of Ni-Al intermetallic compound are appropriate for a catalyst support in high-temperature use. Image analysis and EPMA revealed that both aluminum concentration and voidage in the Ni-Al lining layer show a graded distribution along the thickness direction of the lining layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call