Abstract

The small angle light scattering behavior of hydrous ferric oxide flocs is examined here and found to provide useful insights into the nature of the aggregates formed despite the large size of these aggregates at later times. The flocs appear to exhibit fractal properties over a significant size range though the aggregates appear to be easily disrupted through mixing effects resulting in breakup and/or restructuring to denser assemblages. Background electrolyte concentrations also have some impact on floc structure but mixing effects and apparent destabilization by ferric ions limit the effect of added electrolytes on the stability and structure of ferric oxyhydroxides. Similar estimates of fractal dimensions of these hydrous ferric oxide flocs are obtained both by static light scattering analysis and by a cluster mass scaling approach. The choice of density distribution cutoff function has some impact on derived size and structure parameters and further refinement in this area is needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call