Abstract
A water-soluble polysaccharide isolated from white spruce wood contained D-galactose, L-arabinose, and D-xylose in a molar ratio of 21:3:1. Hydrolysis of the fully methylated polysaccharide yielded 2,3,5-tri-O-methyl-L-arabinose (12 moles); 2,3,4,6-tetra-O-methyl-D-galactose (29 moles); 2,3,4-tri-O-methyl-D-galactose (34 moles); 2,6-di-O-methyl-D-galactose (0.5 moles); 2,4-di-O-methyl-D-galactose (45 moles); 2,3-di-O-methyl-D-xylose (5 moles); and monomethyl xylose (1 mole). When oxidized by periodate the polysaccharide consumed 1.18 moles of oxidant, and yielded 0.56 moles of formic acid per mole of anhydro-D-galactose. The D-xylose was attributed to the presence of a xylan mixed with the arabogalactan in the original polysaccharide preparation. The methylation and periodate oxidation data showed that the arabogalactan possessed a highly branched structure with the anhydro-D-galactose units being joined by 1 → 3 and 1 → 6 glycosidic bonds. All of the L-arabinose was present in the furanoside form as non-reducing terminal units.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have