Abstract
Let R be a ring with identity. We use J(R); G(R); and X(R) to denote the Jacobson radical, the group of all units, and the set of all nonzero nonunits in R; respectively. A ring is said to be Abelian if every idempotent is central. It is shown, for an Abelian ring R and an idempotent-lifting ideal N ⊆ J(R) of R; that R has a complete set of primitive idempotents if and only if R/N has a complete set of primitive idempotents. The structure of an Abelian ring R is completely determined in relation with the local property when X(R) is a union of 2; 3; 4; and 5 orbits under the left regular action on X(R) by G(R): For a semiperfect ring R which is not local, it is shown that if G(R) is a cyclic group with 2 ∈ G(R); then R is finite. We lastly consider two sorts of conditions for G(R) to be an Abelian group.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.