Abstract
Let R be a ring with identity 1, I(R) be the set of all nonunit idempotents in R, and M(R) be the set of all primitive idempotents and 0 of R. We say that I(R) is additive if for all e, f ∈ I(R) (e ≠ f), e + f ∈ I(R), and M(R) is additive in I(R) if for all e, f ∈ M(R)(e ≠ f), e + f ∈ I(R). In this article, the following points are shown: (1) I(R) is additive if and only if I(R) is multiplicative and the characteristic of R is 2; M(R) is additive in I(R) if and only if M(R) is orthogonal. If 0 ≠ ef ∈ I(R) for some e ∈ M(R) and f ∈ I(R), then ef ∈ M(R), (2) If R has a complete set of primitive idempotents, then R is a finite product of connected rings if and only if I(R) is multiplicative if and only if M(R) is additive in I(R).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.