Abstract
We present in this paper the complete structure of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in the L alpha phase (66% RH, 23 degrees C) obtained by the joint refinement of neutron and x-ray lamellar diffraction data. The structural details obtained have previously required a large number of neutron diffraction experiments, using numerous specifically-deuterated phospholipid isomorphs (Büldt et al., 1978. Nature (Lond.). 271:182-184). The joint-refinement approach minimizes specific deuteration by utilizing independent neutron and x-ray data sets. The method yields a quasimolecular structure consisting of a series of multiatomic fragments that are each represented by one or several Gaussian distributions whose positions and widths can be determined to within 0.06 to 0.52 A exclusive of the methylene region. The image of DOPC at 66% RH (5.36 +/- 0.08 waters per lipid) is consistent with many aspects of bilayer structure previously determined by structural and spectroscopic studies. The most striking feature of the structure is the large amount of transbilayer thermal motion suggested by the widths and overlaps of the Gaussian envelopes of the quasimolecular fragments. We discuss the "dynamic bilayer thickness" which describes the minimum effective thickness of the hydrocarbon permeability barrier in terms of the thermal motion of the water. A gradient of thermal motion exists that increases in either direction away from the glycerol backbone which is the most constrained portion of the bilayer. The steric interactions between headgroups of apposed bilayers, expected at the hydration level of our experiments, are clearly revealed. A useful consequence of the quasimolecular structure is that average boundaries within bilayers calculated using composition and volumetric data and ad hoc assumptions can be related to the positions of the principal structural groups. Several measures of "bilayer thickness" in common use can be identified as the positions of the cholines for Luzzati's d1 (Luzzati and Husson. 1962. J. Cell Biol. 12:207-219) and the glycerols for Small's dL (Small. 1967. J. Lipid Res. 8:551-556). We do not know if these relations will be true at other hydrations or for other lipids. Of particular interest is the fact that the position of the carbonyl groups marks the average hydrocarbon/headgroup boundary. It must be emphasized, however, that this region of the bilayer must be generally characterized as one of tumultuous chemical heterogeneity because of the thermal motion of the bilayer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.