Abstract
The recycling of photosynthetically fixed carbon by the action of microbial glycoside hydrolases is a key biological process. The consortium of degradative enzymes involved in this process frequently display catalytic modules appended to one or more noncatalytic carbohydrate-binding modules (CBMs). CBMs play a central role in the optimization of the catalytic activity of plant cell wall hydrolases through their binding to specific plant structural polysaccharides. Despite their pivotal role in the biodegradation of plant biomass, the mechanism by which these proteins recognize their target ligands is unclear. This report describes the structure of a xylan-binding CBM (CBM15) in complex with its ligand. This module, derived from Pseudomonas cellulosa xylanase Xyn10C, binds to both soluble xylan and xylooligosaccharides. The three-dimensional crystal structure of CBM15 bound to xylopentaose has been solved by x-ray crystallography to a resolution of 1.6 A. The protein displays a similar beta-jelly roll fold to that observed in many other families of binding-modules. A groove, 20-25 A in length, on the concave surface of one of the beta-sheets presents two tryptophan residues, the faces of which are orientated at approximately 240 degrees to one another. These form-stacking interactions with the n and n+2 sugars of xylopentaose complementing the approximate 3-fold helical structure of this ligand in the binding cleft of CBM15. In four of the five observed binding subsites, the 2' and 3' hydroxyls of the bound ligand are solvent-exposed, providing an explanation for the capacity of this xylan-binding CBM to accommodate the highly decorated xylans found in the plant cell wall.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have