Abstract

In this paper, a novel (Hydroxyapatite+β-tricalcium phosphate)/Mg-5Sn ((HA+β-TCP)/Mg-5Sn) composite with interpenetrating networks was fabricated by infiltrating Mg-5Sn alloy into porous HA+β-TCP using suction casting technique. The structure, mechanical property and corrosion behaviors of the composite have been evaluated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical testing, electrochemical and immersion test. It is shown that the molten Mg-5Sn alloy has infiltrated not only into the pores but also into the struts of the HA+β-TCP scaffold to forming a compact composite. The microstructure observation also shows that the Mg alloy contacts to the HA+β-TCP closely, and no reaction layer can be found between Mg-5Sn alloy and scaffold. The ultimate compressive strength of the composite is as high as 176MPa, which is about four fifths of the strength of the Mg-5Sn bulk alloy. The electrochemical and immersion tests indicate that the corrosion resistance of the composite is better than that of the Mg-5Sn bulk alloy. The corrosion products on the composite surface are mainly Mg(OH)2, Ca3(PO4)2 and HA. Appropriate mechanical and corrosion properties of the (HA+β-TCP)/Mg-5Sn composite indicate its possibility for new bone tissue implant materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.