Abstract
Bimetallic nanoparticles (NPs) have been shown to exhibit certain advantages over pure NPs in catalysis due to a synergistic effect. It is common to disperse NPs in a polymer matrix such as polyvinylpyrrolidone (PVP) to prevent flocculation, which imparts considerable electronic effects on the NPs. In the present study, the interactions between aqueous solutions of N-ethylpyrrolidone (EP, system chosen to model the monomeric form of PVP) and Au/Pd bimetallic NPs, which are relevant in catalysis, have been investigated using molecular dynamics simulations and density functional theory (DFT) method. The adequacy of the force fields used was assessed based on their ability to reproduce the structures and adsorption energies obtained using DFT calculations. The interactions of NPs with the environment were studied at various concentrations of aqueous solutions of EP to examine the strength of NP–EP and NP–water interactions. Free energy calculations and local mole fraction enhancement values show that that th...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have