Abstract
The paper presents the main hypotheses of frost destruction of cement concrete. The influence of cyclic temperature changes and the effect of static and dynamic (shock) loads on concrete on changes in the structure and strength of concreteis considered. The paper provides results of comparative tests of frost resistance of concrete containing a porous additive and a plasticizer, which contribute to an increase in the density and impermeability of its structure. It has been shown experimentally that the introduction of air-entraining additives with an additional effect of hydrophobization is productive from the standpoint of ensuring frost resistance of concrete of relatively low classes (up to C30/37), compressive strength up to 50 MPa and water absorption by mass more than 4.0 %. It is advisable to increase the frost resistance of concrete with greater impermeability and strength by increasing these indicators, in particular, due to the maximum decrease in the initial water content and high-quality compaction. This conclusion is experimentally confirmed by the data presented in the paper, since the “mechanism” of frost destruction of cement concrete is multifactorial, and the growth of its density (impermeability) and strength provide a higher ability to resist “force” effects associated with repeated alternating deformations of concrete, as well as the action of external loads, accumulation of fatigue phenomena, hydrodynamics of liquid filtration under the influence of changing temperature fields, etc. A comparative assessment of concrete frost resistance has been carried out using standardized and patented techniques containing a porous (air-entraining) additive, as well as plasticizing and mineral additives of amorphous micro-silica, introduced into concrete in order to increase its density, impermeability and strength and on this basis – increasing frost resistance. Experimental data are presented, reflecting the relationship and patterns of decrease in frost resistance of concrete subjected to the simultaneous action of static (for compression – different levels from the corresponding indicator of concrete strength) and shock, concentratedly applied dynamic loads. The regularity of the relationship between the accelerated frost destruction of concrete and the action of mechanical loads that cause cracking in its structure has been confirmed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.