Abstract

Inspiratory pre-Bötzinger complex (preBötC) networks remain active in perinatal rodent brainstem slices. Our analysis of (crescendo-like) inspiratory-related population and cellular bursting in novel histologically identified transversal preBötC slices in physiological (3 mM) superfusate [K(+)] revealed: (i) the preBötC extent sufficient for rhythm in thin slices is at most 175 microm. (ii) In 700 microm thick slices with unilaterally exposed preBötC, a <100 microm kernel generates a eupnea-like inspiratory pattern under predominant influence of caudally adjacent structures or thyrotropin-releasing hormone-like transmitters, but a mixed eupnea-sigh-like pattern when influence of rostral structures or substance-P-like transmitters dominates. (iii) Primarily presynaptic processes may underlie inhibition of rhythm by opioids or raising superfusate [Ca(2+)] from lower to upper physiological limits (1-1.5 mM). (iv) High K(+) reverses depression of rhythm by raised Ca(2+), opioids and anoxia. In summary, distinct activity patterns of spatiochemically organized isolated inspiratory networks depend on both an extracellular "Ca(2+)-K(+) antagonism" and slice dimensions. This explains some discrepant findings between studies and suggests use of "calibrated" slices and more uniform experimental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call