Abstract
This study investigated the macro & micro properties of the composite gels formed by soy protein isolate (SPI) and peach pectin fractions: water-soluble pectin (WSP), chelator-soluble pectin (CSP), and sodium carbonate soluble pectin (NSP). Specially, the interaction between pectin fractions and SPI was studied to explain the formation mechanism of the composite gels. WSP, as a high methoxyl pectin, exhibited rich branching (sugar ratio B = 3.10). CSP, as a low methoxyl pectin, depicted a high linearity. NSP, with low linearity (sugar ratio A = 6.14), contained numerous side chains. Due to the strong interaction between pectin fractions and SPI, the new composites with excellent dense network microstructures were formed, accompanied by increased apparent viscosity, higher G′ and G′′, and reduced particle size. XRD and FT-IR analysis highlighted the modifications in gel structures. SEM-dispersive X-ray spectroscopy observed elemental distribution and framework composition in pectin-SPI gels. Hydrophobic interaction was the most important chemical force in pectin-SPI binding. Molecular docking results indicated that galacturonic acid in pectin bound more strongly to 7S than to 11S, with tighter hydrogen bonds. Notably, WSP-SPI showed the lowest turbidity, indicating enhanced solubility and particle dispersion, which helped prevent aggregation. CSP-SPI demonstrated the highest G′ and G′′, ascribing to the high linearity and abundant carboxyl groups in CSP. NSP-SPI showed the highest apparent viscosity and irregular structure. Overall, the texture properties of pectin-SPI gels were driven by pectin's structure properties, which would provide new and valuable information for texture control in gel formulation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.