Abstract

AbstractThe structure formation processes that occur during the flow of dilute blends of high density polyethylene (HDPE) or polypropylene (PP) In a linear low density polyethylene (LLDPE) carrier phase have been studied. Due to low surface tensions, high deformations of the dispersed minor phase can be induced under slow flow conditions leading to the formation of slender filaments. Measurements on a slit die, having a large, converging flow entrance region, demonstrate that the mechanism for filament formation is droplet bursting, yielding growing tails during shear flow, or, unsteady drop elongation during extensional flow. Tail growth can be modeled as the flow of a slightly tapering cylinder in a fluid of different viscosity, For dispersed to carrier phase viscosity ratios greater than unity, extensional flow occurs in the tail phase, which can induce oriented crystallization. For ratios less than unity, the flow is compressive, which. Inhibits crystallization. Drop deformation and crystallization in the converging flow entrance region is greatly enhanced by the extensional flow, and droplet growth can be described by a model assuming a time‐dependent, planar, extensional flow field. Data for birefringence and melting points of as‐crystallized fibers are also presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.