Abstract

The phase and structural transformations in equiatomic powder compositions of the Al-Cu-Ni-Fe-Cr system during mechanical alloying (MA), annealing and subsequent spark plasma sintering (SPS) had been studied by X-ray diffraction analysis, scanning and transmission electron microscopy, and differential scanning calorimetry. It has been established that the nanocrystalline high-entropy AlCuNiFeCr alloy synthesized during MA consists of a supersaturated solid solution with a bcc crystalline structure. After annealing and spark plasma sintering at 800 °C, the alloy becomes three-phased, and consists mainly of one B2-ordered solid solution, one fcc solid solution (25 wt %), and of the (Сr, Fe)23C6 phase (8 wt %). The Vickers hardness of the sintered AlCuNiFeCr alloy was 8.35 GPa, and the compressive strength at room temperature reached 1960 MPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call