Abstract

In this paper, the intermolecular structural study asserted by the vibrational analysis in the stretch frequencies of hydrogen bonds (π···H) and dihydrogen bonds (H(-δ)···H(+δ)) have definitively been revisited by means of calculations carried out by Density Functional Theory (DFT) and topological parameters derived from the classic treatise of the Quantum Theory of Atoms in Molecules (QTAIM). As a matter of fact the π···H hydrogen bond is formed between the hydrofluoric acid and the C≡C bond of the acetylene, but the QTAIM calculations revealed a distortion in this interaction due to the formation of the ternary complex C(2)H(2)···2(HF). Although the π bonds of ethylene (C(2)H(4)), propylene (C(2)H(3)(CH(3))), and t-butylene (C(2)H(2)(CH(3))(2)) are considered proton acceptors, two hydrogen-bond types--π···H and C···H--can be observed. Over and above the analysis of the π hydrogen bonds, theoretical arguments also were used to discuss the red-shifts in the stretch frequencies of the binary dihydrogen complexes formed by BeH(2)···HX with X = F, Cl, CN, and CCH. Although a vibrational blue-shift in the stretch frequency of the H-C bond of HCF(3) due to the formation of the BeH(2)···HCF(3) dihydrogen complex was obtained, unmistakable red-shifts were detected in LiH···HCF(3), MgH(2)···HCF(3), and NaH···HCF(3). Moreover, the alkali-halogen bonds were identified in relation to the formation of the trimolecular systems NaH···2(HCF(3)) and NaH···2(HCCl(3)). At last, theoretical calculations and QTAIM molecular integrations were used to study a novel class of dihydrogen-bonded complexes (mC(2)H(5)(+)···nMgH(2) with m = 1 or 2 and n = 1 or 2) based in the insight that MgH(2) can bind with the non-localized hydrogen H(+δ) of the ethyl cation (C(2)H(5)(+)). In an overview, QTAIM calculations were applied to evaluate the molecular topography, charge density, as well as to interpret the shifted frequencies either to red or blue caused by the formation of the hydrogen bonds and dihydrogen bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.