Abstract

Mesoporous titania is a highly studied material due to its energy and environment-related applications, which depend on its tailored surface and electronic properties. Understanding the behavior of water in titania pores is a central issue for practical purposes in photocatalysis, solar cells, bone implants, or optical sensors. In particular, the mechanisms of capillary condensation of water in titania mesopores and the organization and mobility of water as a function of pore filling fraction are not yet known. In this work, molecular dynamics simulations of water confined in TiO2-rutile pores of diameters 1.3, 2.8, and 5.1 nm were carried out at various water contents. Water density and diffusion coefficients were obtained as a function of the distance from the surface. The proximity to the interface affects density and diffusivity within a distance of around 10 A from the walls, beyond which all properties tend to converge. The densities of the confined liquid in the 2.8 and the 5.1 nm pores decrease, r...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.