Abstract
The density and surface tension of water in small pores of silicas have been investigated. These physical properties of water in the pores were calculated from a comparison of pore volumes and pore radii which were estimated from adsorption and desorption isotherms of nitrogen and water. Below a pore radius of about 5 nm both the density and the surface tension of water in the pores were smaller than those of the bulk liquid and decreased with a decrease in pore size. The density of water in the pores decreased with an increase in the concentration of surface hydroxyl groups. Similarly the surface tension of water in the pores is influenced by the surface hydroxyl groups. Anomalous changes in the density and surface tension of the water in the pores are attributed to the interaction of water molecules with surface hydroxyl groups and hydrogen-bond formation among water molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.