Abstract

The solvation of carbon dioxide in solution represents a key step for the capture and fixation CO2 in nature, which may be further influenced by the formation of (bi)carbonate species and/or the formation of CO2 clusters in solution. The latter processes are strongly dependent on the exact environment of the liquid state (e.g., pH value, solvated ions, etc.) and may interfere with the experimental determination of structural, dynamical, and thermodynamic properties. In this work a hybrid quantum mechanical/molecular mechanical (QM/MM) simulation approach at correlated ab initio level of theory resolution-of-identity second-order Møller-Plesset Perturbation Theory (RI-MP2) has been applied in the framework of thermodynamic integration (TI) to study structure, dynamics, and the hydration free energy of a single carbon dioxide molecule in aqueous solution. A detailed analysis of the individual QM/MM potential energy contributions demonstrate that the overall potential remains highly consistent over the entire sampling phase and that no artificial contributions are influencing the determination of the hydration free energy. The latter value of 0.01 ± 0.92 kcal/mol was found in very good agreement with the values of 0.06 and 0.24 kcal/mol obtained via quasi-chemical theory and experimental measurements, respectively. In order to obtain detailed information about the C- and O C-water interaction, conically restricted regions with respect to the main axis of the CO2 molecule have been employed in structural analysis. The presented data not only provide detailed information about the hydration properties of CO2 but act as a critical validation of the simulation technique, which will be beneficial in the study of nonaqueous solvents such as pure and aqueous NH3 solutions, which have been suggested as potential candidates to capture CO2 from anthropogenic sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.