Abstract
The solubility of carbon dioxide in aqueous alkanolamine solutions was investigated in the high gas loading region based on experimental measurements and thermodynamic modeling. An experimental phase equilibrium study was performed to evaluate the absorption of carbon dioxide in aqueous solutions of five representative alkanolamines, including monoethanolamine, diethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-1-propanol and piperazine. The carbon dioxide loadings of these solutions were determined for a wide range of pressures (62.5 kPa to 4150 kPa), temperatures (303.15 K to 343.15 K) and alkanolamine concentrations (2 M to 4 M). The results were found to be largely consistent with those previously reported in the literature. Furthermore, a hybrid Kent–Eisenberg model was developed for the correlation of the experimental data points. This new model incorporated an equation of state/excess Gibbs energy model for determining the solubility of carbon dioxide in the high-pressure–high gas loading region. This approach also used a single correction parameter, which was a function of the alkanolamine concentration. The results of this model were in excellent agreement with our experimental results. Most notably, this model was consistent with other reported values from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.