Abstract

Time-resolved small-angle x-ray scattering (SAXS) is used to follow the formation of resorcinol-formaldehyde (RF) gels. An existing morphological model based on Gaussian random fields, and validated on RF aerogels, is generalized to analyze the data. The generalization is done in two different ways, one being relevant to colloid aggregation and the other to microphase separation. The SAXS data do not enable discrimination between the two mechanisms of gel formation, which shows that aggregation and microphase separation can generate very similar morphologies at the length scales explored by SAXS. Furthermore, physical arguments suggest that, in the case of RF gels, aggregation and microphase separation can be regarded as two idealizations of the same complex physical process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call